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Abstract. The Monitoring Trends in Burn Severity project is a comprehensive fire atlas for the United States that
includes perimeters and severity data for all fires greater than a particular size (,400 ha in the western US, and,200 ha in

the eastern US). Although the database was derived for management purposes, the scientific community has expressed
interest in its research capacity. As with any derived data, it is critical to understand inherent limitations to maximise the
utility of the dataset without compromising the inferences. The classified severity product in particular is of limited use to

research due to a lack of both consistency in developing class thresholds and empirical relationships with ecological
metrics. Here we review the products available and their development process, and characterise and quantify the
limitations of the classified burn severity data product based on the use of highly variable and subjective classification
thresholds. We suggest a framework for overcoming these limitations by developing a more robust classified product that

will support ecological management and applications. This framework utilises field data to develop consistent,
ecologically based thresholds that incorporate existing ecoregion classifications from LANDFIRE or other fire
management frameworks already widely integrated into planning efforts.
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Introduction

Wildfire burn severity maps reveal immediate fire effects and
long-term ecosystem changes applicable to many management
needs, including fire planning and mitigating post-fire watershed

effects (Robichaud et al. 2007). Focusing on fire planning, the
Monitoring Trends in Burn Severity project (MTBS, www.mtbs.
gov) evolved from the joint National Park Service (NPS) and

United StatesGeological Survey (USGS)Burn SeverityMapping
project developed to map and monitor wildfire effects across
national parks from remotely sensed data (Eidenshink et al.

2007). Two primary products of the initial effort were the
Composite Burn Index (CBI), a field methodology for quantify-
ing total fire effects at the spatial resolution ofLandsat reflectance

data, and the Normalised Burn Ratio (NBR), a spectral index that
differentiates between healthy green, dry senesced and charred
vegetation (Key and Benson 2006). Subsequent research pro-
duced a differenced NBR (dNBR) from pre- and post-fire scenes

more strongly correlated with 1-year post-fire field measure-
ments of burn severity than the single, post-fire NBR scene for
some ecosystems; although considerable uncertainty remains

over the nature of the biophysical responses detected by dNBR
(Lentile et al. 2009). A relative version of dNBR (RdNBR)
accounting for pre-fire fuel heterogeneity was more accurate in

delineating higher degrees of fire effects in ecosystems with
lower fuel loads (Miller and Thode 2007; Cansler and McKenzie
2012). MTBS retrospectively mapped NBR, dNBR and RdNBR
for wildfires in the United States dating back to 1984 and

classified dNBR into thematic severity maps. Additionally, some
prescribed and agricultural fires were mapped because the burn

scars were visible on the Landsat scenes. There is a,2-year lag
for inclusion of new fires into the database.

The research community has increased its focus on larger-

scale assessment of burn severity in recent years, including
analysing trends and patterns (e.g. Miller et al. 2009; Lannom
et al. 2014; Cansler and McKenzie 2014) and relating burn

severity to biophysical phenomena and management practices
(e.g. Smith et al. 2007; Wimberly et al. 2009; Kolden and
Abatzoglou 2012; Hicke et al. 2013; Morrison and Kolden
2015). Robustness of such studies is dependent upon MTBS

product accuracy; because MTBS was developed specifically for
management needs and has not undergone systematic, field-
based evaluation to quantify individual fire accuracy for scientific

purposes (e.g. including error bars in analyses), most of these
studies used MTBS protocols to develop their own equivalent
data products with field-based accuracy assessments. However,

given the widespread availability of the MTBS dataset, reprodu-
cing its methodology on a case-by-case basis seems counter-
productive to the development of a broadly transferable tool.

Here, we review sources of error in theMTBS products that affect
research accuracy and robustness of results, including:

� Areas of no detectable change are included in MTBS fire
perimeters.

� The phenology offset is not applied to continuous spectral
indices (i.e. dNBR and RdNBR).
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� Subjective, highly variable classification thresholds are used
to map classified burn severity.

� Classification thresholds are neither ecologically quantified

nor field validated.

We consequently propose a framework for improving utility

of the MTBS products based on identifying ecologically based
classification thresholds tied to the LANDFIRE project.

Data products and limitations

The two primary MTBS spatial data products are polygon fire
perimeters and four burn severity raster datasets (i.e. continu-
ous NBR, dNBR and RdNBR indices, and a five-class, the-

matic map of burn severity) (Sparks et al. 2015). Because
polygon perimeters often include unburned patches within the
fire, errors of commission usually exceed errors of omission,

leading to true area burned overestimations of 16–35%
(Kolden and Weisberg 2007; Kolden et al. 2012; Sparks et al.
2015). Notably, excluding unchanged areas within wildfires in

analyses of relationships to external drivers (e.g. climate) has
been demonstrated to improve relationships (Abatzoglou and
Kolden 2013).

The NBR, dNBR and RdNBR continuous data rasters are
created through a semi-automated process following best prac-
tice to select pre- and post-fire Landsat scenes, including
anniversary dates to minimise phenological differentiation,

maximal solar angle to reduce shadows and cloud-free scenes
to maximise data coverage (Key 2006). The result is a unitless
index correlated with a variety of ground-observed and quanti-

fied fire effects metrics, such as vegetative cover, char, ash and
organic soil consumption with variable significance and
strength ranging from high to relatively low (Lentile et al.

2006a; Eidenshink et al. 2007). Prior efforts have concluded
that the sensitivity and accuracy of these indices for representing
fire effects is highly variable by ecosystem (Lentile et al. 2006a,
2009; French et al. 2008). Following best practice, MTBS

calculates an ‘offset value’ for both dNBR and RdNBR derived
from a relatively homogenous area of unburned vegetation
outside the fire perimeter that represents the phenological differ-

ence between pre- and post-fire scenes (Key 2006). Ideally, this
offset value should be applied to normalise dNBR and RdNBR
for phenological differences between fires across space and time.

However,MTBS does not automatically apply the offset value to
dNBR and RdNBR products; it is assumed that users will apply
the offset themselves, but this step is rarely noted as being

performed in the literature.
In contrast to the semi-automated process producing the

spectral indices, the thematic burn severity classifications are
developed on a per-fire basis and are the most subjective MTBS

product. As described in detail in Eidenshink et al. (2007), an
analyst visually interprets maps and dNBR histograms and
subjectively assigns threshold values to delineate each of the

five primary classes: Increased greenness, Unchanged, Low,
Moderate and High burn severity. Although this approach
produces a thematic map that is useful for achieving a general

sense of the spatial burn severity pattern, it lacks both the
empirical foundation and the accuracy necessary for quantita-
tive assessment of trends and patterns that should be expected
for a scientific framework.

Three primary concerns exist for using the classified burn
severity products based on these subjective and highly variable
thresholds. First, the classified product was created from dNBR.

This index can be less sensitive than other approaches
(e.g. RdNBR or spectral mixture analysis) to variability in fire
effects at both higher burn severities and in ecosystems where

the pre-fire live vegetation density is lower, resulting in lower
classification accuracy (Roy et al. 2006; Hudak et al. 2007;
Miller and Thode 2007; Kolden and Rogan 2013).

Second, a distribution analysis ofMTBS thresholds applied to
individual fires during the development of the dataset demon-
strates their subjectivity. Fig. 1 displays the classification thresh-
olds for every MTBS fire from 1984 to 2010 (obtained from the

individual fire metadata files) delineated by Geographic Area
Coordination Center (GACC) boundaries. These distributions
demonstrate that (1) the High severity classification threshold is

the most variable and (2) there is considerable overlap of thresh-
olds between fires,meaning that a specific dNBRvalue (e.g. 200)
could be classified as Low, Moderate or High severity on three

different fires within the same region.
Third, and perhaps most critical, MTBS threshold values are

not empirically field validated to objective ecological metrics,

but based on limited analyst interpretation (Eidenshink et al.

2007). For example, if a user interested in wildlife habitat
wished to assess specific amounts of tree mortality or loss of
canopy cover following fire, ecologically based thresholds

would define this on a per-ecoregion basis (e.g. a dNBR
threshold of 500 might be associated with a specific conifer
type experiencing 80% tree mortality or greater based on field

data from numerous fires). A few studies have regressed contin-
uous dNBR values with such ecosystem metrics; however, these
relationships may be site specific and were not applied byMTBS

to the thematic classifications (Lentile et al. 2009). Current
thresholds assigned to each MTBS fire lack this ecological
association, and are not comparable across fires for empirical
analysis. The Increased Greenness and Unchanged classes are

nationally consistent, but the other three severity thresholds
discriminating Unchanged from Low, Low from Moderate and
Moderate from High, are highly variable (Fig. 1).

One assessment of the effects of arbitrary thresholds
is through comparison to classifications based on specific
(i.e. not aggregated), field-validated biological or physiological

metrics that have defined units (e.g. change in canopy cover,
biomass consumed or tree mortality). Few studies have utilised
multiple fires across an ecoregion to identify such thresholds

(e.g. Lentile et al. 2006b; Holden et al. 2009; Miller et al. 2009;
Cansler and McKenzie 2012). Cansler and McKenzie (2012)
identified ecologically based dNBR and RdNBR thresholds for
their Washington State study area based on over 600 field

validation plots, defining Low severity as 0–19% tree mortality,
Moderate as 20–59% and High as 60–100%. A comparison of
their severity classification (from ecological thresholds) to the

MTBS classification (from subjective thresholds) reveals sub-
stantial differences across example fires within the same region
(Fig. 2). The most pronounced differences are in the Low and

High severity classes, where MTBS classified an average of
123% more area burned at Low severity and 43% less area
burned at High severity compared with Cansler and McKenzie
(2012) for two example fires.
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A framework for developing a robust, classified
MTBS product

Several steps can be taken to utilise MTBS data in a
consistent, ecologically linked, and scientifically defensible

manner. First, areas of no detectable change can be removed
from within fire perimeters to represent true area
burned (e.g. Abatzoglou and Kolden 2013). Second, the

phenology offset value should be applied to the dNBR

Rainbow
bridge fire

Whiteface
fire

MTBS arbitrary
thresholds

Severity

Unburned

Low

Cansler and
McKenzie
defined

thresholds

Moderate

High

Fig. 2. Example of differences in the classified burn severity maps between arbitrary thresholds assigned

by Monitoring Trends in Burn Severity (top) and the ecologically based thresholds (bottom) identified by

Cansler and McKenzie (2012) for two fires in the North Cascades region of Washington State.
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Fig. 1. Histogram examples of the wide distribution of classification thresholds for the 10 contiguous US Geographic Areas Coordination Center (GACC)

regions: Eastern, Eastern Great Basin (EGB), Northern California (NCal), Northern Rockies (NR), North-west (NW), Rocky Mountains (RM), Southern

(SE), Southern California (SCal), South-west (SW) and Western Great Basin (WGB). The differenced Normalised Burn Ratio (dNBR) values for each

threshold represent the value used byMonitoring Trends in Burn Severity (MTBS) to split between two classes: Unchanged to Low (cyan), Low toModerate

(yellow) and Moderate to High (red). Bin size is 25; the y-axis represents percentage of MTBS fires with thresholds in that bin for the specific GACC.

Utilising MTBS burn severity products Int. J. Wildland Fire 1025



and RdNBR spectral indices, particularly when comparing

multiple fires.
Finally, classified data must be made consistent and compa-

rable across space and time by identifying classification thresh-

olds based on empirical ecological metrics. This alignment of
class thresholds and ecological metrics could occur at broad
ecoregion levels, but we suggest that such an effort would align
well with the LANDFIRE project objectives (Rollins 2009;

Ryan and Opperman 2013), particularly if thresholds were
defined for the finer-scale Biophysical Settings (BpS) models
used as the basis for LANDFIRE product development, as was

implemented by Miller and Safford (2012). Such thresholds
could subsequently apply to other LANDFIRE products, such as
Existing Vegetation Type, which is widely used for manage-

ment purposes as it represents current conditions (Rollins 2009;
Nelson et al. 2013). The rationale for this framework is that fire
regime characteristics are defined by BpS model, where burn

severity is a fire regime characteristic. Once these thresholds are
defined nationally for each BpS model, re-classification of raw
dNBR and RdNBR outputs could then create new classified
MTBS products (Fig. 3).

Such products (both the thresholds and re-classified data)
would require identifying key ecological metrics critical to land

management planning; for example, percentage change in

canopy cover, basal area or biomass (Miller et al. 2009).Metrics
will likely vary across ecoregions depending on ecosystem
goods and services of interest. Potential routes to defining

thresholds include drawing from the ecosystem vulnerability
and resilience literature (e.g. Smith et al. 2014) or using the
framework of State and Transition models (e.g. LANDSUM
successional pathway modelling within LANDFIRE, Keane

et al. 2006), where severity thresholds for each BpS model are
defined by what magnitude of change results in a transition to a
new successional state (Fig. 3). Thus, the final product would

ideally include a cross-walk table to identify ecological metrics
used in classification and provide alternative thresholds for
classification based on other metrics that users could apply to

the raw dNBR or RdNBR data.
Field data are the foundation of such a development process.

Although several regional datasets exist, two existing US-wide

data sources could be utilised to minimise new and expensive
field data acquisitions: (i) CBI and GeoCBI plots used to field
validate dNBR throughout the US (Key and Benson 2006;
De Santis and Chuvieco 2009) and (ii) the Forest Inventory

and Analysis (FIA) programme (Bechtold and Patterson 2005).
CBI is a unitless, aggregated measure of field burn severity;

Classification framework

1. Identify existing field data by ecoregion/BpS
model

E.g., CBI, FIA, other post-fire field
assesments

E.g., ΔCanopy cover, ΔBasal area, ΔBiomass,
%Mortality, etc.

E.g., ΔBiomass � (dNBR/RdnBR) a � b

Mid-
open

Late-
open

Late-
closed

Mid-
closed

Early/
initiation

High
Mod
Low
Unch
Succession

Base on LANDSUM or other S&T models
(e.g., ΔBiomass � Conversion from Late-closed
to Late-open successional state)

New field data collection2. Fill spatial gaps in field data

3. Identify key ecological metrics & thresholds
used by management

4. Quantify relationships between thresholds
and severity indices

5. Set classification thresholds based on
ecological transitions

6. Apply thresholds and classify by LANDSUM
BpS model or ecoregion

Output:
New classified burn severity maps
based on field-validated ecological
metrics and S&T model thresholds

Input:
Existing automated

MTBS products:
dNBR and RdNBR

Apply ‘offset’ values
to dNBR & RdNBR to

normalise for inter-
annual variability in

phenology

Fig. 3. Suggested framework for developing a national set of thresholds congruentwith existing LANDFIRE products (Rollins 2009) and

based on ecological State-and-Transition (S&T) model approaches such as LANDSUM (Keane et al. 2006). These thresholds could be

applied to create a more consistent and accurate Monitoring Trends in Burn Severity classified severity product that is linked to ecological

thresholds.
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however, both CBI and FIA protocols include unit-based mea-
surements of fire-induced treemortality, canopy cover and other
ecological information. Whereas CBI plots are generally

installed 1 year post-fire, FIA plots are re-sampled at regular
(,5 year) intervals, such that any FIA plots burned in the
intervening period could be utilised to help define thresholds.

Following Cansler and McKenzie (2012), specific ecological
thresholds could be identified for the most critical metrics from
all field plots within a BpS region, and relationships modelled

between ecological metrics and spectral indices. Following our
earlier example, if 80% tree mortality is required for a forested
stand to be suitable habitat for a critical bird species, tree
mortality per CBI or FIA plot would be modelled from RdNBR

and the RdNBR value where tree mortality equals 80% could be
used as a threshold for High burn severity in that BpS model. As
with land cover classifications (e.g. the National Land Cover

Dataset), the accuracy would be included. As there are several
metrics and thresholds that could potentially be of interest to
users, we suggest that national workshops identify and docu-

ment priorities per BpS (similar to the LANDFIRE development
process) to facilitate the development of robust classification
schemes.

Conclusion

The development of the MTBS national burn severity atlas
helped facilitate operational monitoring of trends and patterns in
wildfire effects and burn severity, but its use for robust scientific

analysis and application is currently limited by a lack of accu-
racy and field-based validation of the most widely used product:
the thematic maps of classified burn severity. The thresholds

used for classification arewidely variable by region, and overlap
considerably, with the greatest variability and uncertainty in
the threshold that delineates High severity; unfortunately, this

is the class that is often of the greatest interest to land managers.
The framework we propose for developing ecologically based
thresholds could standardise land management planning efforts

and integrate MTBS with the widely used LANDFIRE suite of
products, thus improving and streamlining the application of
new landscape burn severity science to management practices.

Acknowledgements

The authors are grateful for valuable feedback on earlier versions of this

work fromRyan Haugo, Chris Zanger, KerryMetlen, Nicole Vaillant, Alina

Cansler, the Associate Editor and an anonymous reviewer. Funding was

provided by USGS North-west Climate Science Center. Any use of trade,

product, or firm names is for descriptive purposes only and does not imply

endorsement by the US Government.

References

Abatzoglou JT, Kolden CA (2013) Relationships between climate and

macroscale area burned in the western United States. International

Journal of Wildland Fire 22, 1003–1020. doi:10.1071/WF13019

BechtoldWA, Patterson PL (Eds) (2005) The enhanced forest inventory and

analysis program: national sampling design and estimation procedures.

USDA Forest Service, Southern Research Station, General Technical

Report SRS-GTR-80. (Ashville, NC)

Cansler CA, McKenzieD (2012)How robust are burn severity indiceswhen

applied in a new region? Evaluation of alternate field-based and remote-

sensing methods. Remote Sensing 4, 456–483. doi:10.3390/RS4020456

Cansler CA, McKenzie D (2014) Climate, fire size, and biophysical

setting control fire severity and spatial pattern in the northern Cascade

Range, USA. Ecological Applications 24, 1037–1056. doi:10.1890/

13-1077.1

De Santis A, Chuvieco E (2009) GeoCBI: a modified version of the

Composite Burn Index for the initial assessment of the short-term burn

severity from remotely sensed data.Remote Sensing of Environment 113,

554–562. doi:10.1016/J.RSE.2008.10.011

Eidenshink J, SchwindB, Brewer K, Zhu Z, Quayle B, Howard S (2007) A

project for monitoring trends in burn severity. Fire Ecology 3, 3–21.

doi:10.4996/FIREECOLOGY.0301003

French NH, Kasischke ES, Hall RJ, Murphy KA, Verbyla DL, Hoy EE,

Allen JL (2008) Using Landsat data to assess fire and burn severity in

the North American boreal forest region: an overview and summary

of results. International Journal of Wildland Fire 17, 443–462.

doi:10.1071/WF08007

Hicke JA, Meddens AJH, Allen CD, Kolden CA (2013) Carbon stocks of

trees killed by bark beetles and wildfire in the western United States.

Environmental Research Letters 8, 035032. doi:10.1088/1748-9326/8/3/

035032

HoldenZA, Morgan P, Evans JS (2009)A predictivemodel of burn severity

based on 20-year satellite-inferred burn severity data in a large south-

western US wilderness area. Forest Ecology and Management 258,

2399–2406. doi:10.1016/J.FORECO.2009.08.017

Hudak AT, Morgan P, Bobbitt MJ, Smith AMS, Lewis SA, Lentile LB,

Robichaud PR, Clark JT, McKinley RA (2007) The relationship of

multispectral satellite imagery to immediate fire effects. Fire Ecology 3,

64–90. doi:10.4996/FIREECOLOGY.0301064

Keane RE, Holsinger LM, Pratt SD (2006) Simulating historical landscape

dynamics using the landscape fire successionmodel LANDSUMversion

4.0. .USDA Forest Service, Rocky Mountain Research Station, General

Technical Report RMRS-GTR-171CD. (Fort Collins, CO)

Key CH (2006) Ecological and sampling constraints on defining landscape

fire severity. Fire Ecology 2, 34–59. doi:10.4996/FIREECOLOGY.

0202034

Key CH, Benson NC (2006) Landscape assessment: sampling and analysis

methods. USDA Forest Service, Rocky Mountain Research Station

General Technical Report RMRS-GTR-164-CD. (Ogden, UT)

Kolden CA, Abatzoglou JT (2012) Wildfire consumption and interannual

impacts by land cover in Alaskan boreal forest. Fire Ecology 7, 98–114.

doi:10.4996/FIREECOLOGY.0801098

Kolden CA, Rogan J (2013) Mapping wildfire burn severity in the Arctic

tundra: novel approaches for an extreme environment. Arctic, Antarctic,

and Alpine Research 45, 64–76. doi:10.1657/1938-4246-45.1.64

Kolden CA, Weisberg PW (2007) Assessing accuracy of manually-mapped

wildfire perimeters in topographically dissected areas. Fire Ecology 3,

22–31. doi:10.4996/FIREECOLOGY.0301022

Kolden CA, Lutz JA, Key CH, Kane JT, Van Wagtendonk JW (2012)

Mapped versus actual burned area within wildfire perimeters: character-

izing the unburned. Forest Ecology and Management 286, 38–47.

doi:10.1016/J.FORECO.2012.08.020

LannomKO, TinkhamWT, Smith AMS, Abatzoglou JT, NewinghamBA,

Hall TE, Morgan P, Strand EK, Paveglio TB, Anderson JW, Sparks

AM (2014) Defining extreme wildland fires using geospatial and

ancillary metrics. International Journal of Wildland Fire 23, 322–337.

doi:10.1071/WF13065

Lentile LB, Holden ZA, Smith AMS, Falkowski MJ, Hudak AT, Morgan P,

Lewis SA, Gessler PE, Benson NC (2006a) Remote sensing techniques

to assess active fire characteristics and post-fire effects. International

Journal of Wildland Fire 15, 319–345. doi:10.1071/WF05097

Lentile LB, Smith FW, Shepperd WD (2006b) Influence of topography and

forest structures on patterns of mixed severity fire in ponderosa pine

forests of the South Dakota Black Hills, USA. International Journal of

Wildland Fire 15, 557–566. doi:10.1071/WF05096

Utilising MTBS burn severity products Int. J. Wildland Fire 1027

http://dx.doi.org/10.1071/WF13019
http://dx.doi.org/10.3390/RS4020456
http://dx.doi.org/10.1890/13-1077.1
http://dx.doi.org/10.1890/13-1077.1
http://dx.doi.org/10.1016/J.RSE.2008.10.011
http://dx.doi.org/10.4996/FIREECOLOGY.0301003
http://dx.doi.org/10.1071/WF08007
http://dx.doi.org/10.1088/1748-9326/8/3/035032
http://dx.doi.org/10.1088/1748-9326/8/3/035032
http://dx.doi.org/10.1016/J.FORECO.2009.08.017
http://dx.doi.org/10.4996/FIREECOLOGY.0301064
http://dx.doi.org/10.4996/FIREECOLOGY.0202034
http://dx.doi.org/10.4996/FIREECOLOGY.0202034
http://dx.doi.org/10.4996/FIREECOLOGY.0801098
http://dx.doi.org/10.1657/1938-4246-45.1.64
http://dx.doi.org/10.4996/FIREECOLOGY.0301022
http://dx.doi.org/10.1016/J.FORECO.2012.08.020
http://dx.doi.org/10.1071/WF13065
http://dx.doi.org/10.1071/WF05097
http://dx.doi.org/10.1071/WF05096


Lentile LB, Smith AMS, Hudak AT, Morgan P, Bobbitt MJ, Lewis SA,

Robichaud PR (2009) Remote sensing for prediction of 1-year post-fire

ecosystem condition. International Journal of Wildland Fire 18,

594–608. doi:10.1071/WF07091

Miller JD, Safford HD (2012) Trends in wildfire severity: 1984 to 2010 in

the Sierra Nevada, Modoc Plateau, and southern Cascades, California,

USA.Fire Ecology 8(3), 41–57. doi:10.4996/FIREECOLOGY.0803041

Miller JD, Thode AE (2007) Quantifying burn severity in a heterogeneous

landscape with a relative version of the delta Normalized Burn Ratio

(dNBR). Remote Sensing of Environment 109, 66–80. doi:10.1016/

J.RSE.2006.12.006

Miller JD, Safford HD, Crimmins M, Thode AE (2009) Quantitative

evidence for increasing forest fire severity in the Sierra Nevada and

Southern CascadeMountains, California and Nevada, USA. Ecosystems

12, 16–32. doi:10.1007/S10021-008-9201-9

Morrison KD, Kolden CA (2015) Modeling the impacts of wildfire on

runoff and pollutant transport from coastal watersheds to the nearshore

environment. Journal of Environmental Management 151, 113–123.

doi:10.1016/J.JENVMAN.2014.12.025

Nelson KJ, Connot J, Peterson B, Martin C (2013) The LANDFIRE

refresh strategy: updating the national dataset. Fire Ecology 9,

80–101. doi:10.4996/FIREECOLOGY.0902080

Robichaud PR, Lewis SA, Laes DYM, Hudak AT, Kokaly RF, Zamudio

JA (2007) Postfire soil burn severity mapping with hyperspectral image

unmixing. Remote Sensing of Environment 108, 467–480. doi:10.1016/

J.RSE.2006.11.027

Rollins MG (2009) LANDFIRE: a nationally consistent vegetation,

wildland fire, and fuel assessment. International Journal of Wildland

Fire 18, 235–249. doi:10.1071/WF08088

Roy DP, Boschetti L, Trigg SN (2006) Remote sensing of fire severity:

assessing the performance of the normalized burn ratio IEEEGeoscience

and Remote Sensing Letters 3, 112–116. doi:10.1109/LGRS.2005.

858485

Ryan KC, Opperman TS (2013) LANDFIRE – A national vegetation/fuels

data base for use in fuels treatment, restoration, and suppression

planning. Forest Ecology and Management 294, 208–216.

doi:10.1016/J.FORECO.2012.11.003

Smith AMS, Lentile LB, Hudak AT, Morgan P (2007) Evaluation of linear

spectral unmixing and dNBR for predicting post-fire recovery in a

N. American ponderosa pine forest. International Journal of Remote

Sensing 28, 5159–5166. doi:10.1080/01431160701395161

SmithAMS, KoldenCA, TinkhamWT, TalhelmA, Marshall JD, HudakAT,

Boschetti L, Falkowski MJ, Greenberg JA, Anderson JW, Kliskey A,

Alessa L, Keefe RF, Gosz J (2014) Remote sensing the vulnerability

of vegetation in natural terrestrial ecosystems. Remote Sensing of

Environment 154, 322–337. doi:10.1016/J.RSE.2014.03.038

Sparks AM, Boschetti L, Smith AMS, Tinkham WT, Lannom KO, New-

ingham BA (2015) An accuracy assessment of the MTBS burned area

product for shrub–steppe fires in the northernGreat Basin, United States.

International Journal of Wildland Fire 24, 70–78. doi:10.1071/

WF14131

Wimberly MC, Cochrane MA, Baer AD, Pabst K (2009) Assessing fuel

treatment effectiveness using satellite imagery and spatial statistics.

Ecological Applications 19, 1377–1384. doi:10.1890/08-1685.1

www.publish.csiro.au/journals/ijwf

1028 Int. J. Wildland Fire C. A. Kolden et al.

http://dx.doi.org/10.1071/WF07091
http://dx.doi.org/10.4996/FIREECOLOGY.0803041
http://dx.doi.org/10.1016/J.RSE.2006.12.006
http://dx.doi.org/10.1016/J.RSE.2006.12.006
http://dx.doi.org/10.1007/S10021-008-9201-9
http://dx.doi.org/10.1016/J.JENVMAN.2014.12.025
http://dx.doi.org/10.4996/FIREECOLOGY.0902080
http://dx.doi.org/10.1016/J.RSE.2006.11.027
http://dx.doi.org/10.1016/J.RSE.2006.11.027
http://dx.doi.org/10.1071/WF08088
http://dx.doi.org/10.1109/LGRS.2005.858485
http://dx.doi.org/10.1109/LGRS.2005.858485
http://dx.doi.org/10.1016/J.FORECO.2012.11.003
http://dx.doi.org/10.1080/01431160701395161
http://dx.doi.org/10.1016/J.RSE.2014.03.038
http://dx.doi.org/10.1071/WF14131
http://dx.doi.org/10.1071/WF14131
http://dx.doi.org/10.1890/08-1685.1

